2017年8月4日星期五

高数公式

| f x A | < 0 < | x x 0 | < δ x 0 u x D , x D ' , D ' K = | x ' t y t x t y t | [ x 2 t + y 2 t ] 3 2 ρ = 1 K sin n x d x = 1 n sin n 1 x cos x + n 1 n sin n 2 x d x cos n x d x = 1 n cos n 1 x sin x + n 1 n cos n 2 x d x tan x d x = ln cos x sec 2 x d x = tan x sec x tan x d x = sec x cot x d x = ln sin x sec x d x = ln sec x + tan x c s c x d x = ln c s c x + cot x arcsin x d x = x arcsin x + 1 x 2 arccos x d x = x arccos x 1 x 2 arctan x d x = x arctan x 1 2 ln x 2 + 1 arccot x d x = x arccot x + 1 2 ln x 2 + 1 1 1 x 2 d x = arcsin x 1 1 x 2 d x = arccos x 1 1 + x 2 d x = arctan x 1 1 + x 2 d x = arccot x a x d x = a x ln a 0 + e x 2 d x = π 2 0 π 2 sin n x d x = n 1 n π 2 n + 1 % 2 sec x = sec x tan x tan x = sec 2 x cot x = c s c 2 x c s c x = c s c x cot x arcsin x = 1 1 x 2 arccos x = 1 1 x 2 arctan x = 1 1 + x 2 arccot x = 1 1 + x 2 a x = a x ln a J = d x = | F y F z G y G z | d z d x = | F x F y G x G y | J d y d x = | F z F x G z G x | J T = x t , y t , z t T 0 = cos α , cos β , cos γ x x 0 x t = y y 0 y t = z z 0 z t x x 0 · 1 + y y 0 · d y 0 d x 0 + z z 0 · d z 0 d x 0 = 0 φ x , ψ x , ω x φ x , ψ x , ω x n = F x , F y , F z T · n = 0 x x 0 F x = y y 0 F y = z z 0 F z x x 0 · F x + y y 0 · F y + z z 0 · F z = 0 f l | x 0, y 0 = F x cos α + F y cos β n grad f x 0, y 0 = f n n f l = F x cos α + F y cos β = grad f x 0, y 0 · e i = | grad f | cos α cos α = F x 1 + F 2 x + F 2 y cos γ = 1 1 + F 2 x + F 2 y L x = f x + λ g x cos β = F y 1 + F 2 x + F 2 y f 2 f 1 · Δ σ D f d σ = x 1 x 2 d x f x 1 f x 2 f d y A x 0 = φ 1 x 0 φ 2 x 0 f x d y d σ = d x d y D f d σ = θ 1 θ 2 d θ φ 1 θ φ 2 θ f ρ d ρ d σ = 1 2 ρ + d ρ 2 d θ 1 2 ρ 2 d θ = ρ d ρ d θ D e x 2 y 2 d x d y = π 1 e a 2 x a 2 + y 2 = a 2 y 2 = 2 a x x 2 x 2 + y 2 = ρ 2, x = ρ cos θ ρ = 2 a cos θ ρ d ρ = 1 2 d ρ 2 y = x 2 ρ = tan θ sec θ 1 t 1 + t = 1 t 1 t 2 f x , f , z d v = D x y F x , y d σ F x , y = f 2 x f x f x , y , z d z A = D x y 1 + Z 2 x + Z 2 y d x d y x = M y M = Σ m i x i Σ m i = D x μ d σ D μ d σ x = D x d σ x = x μ d v μ d v I x = y 2 i m i = D y 2 μ d σ F x = G ρ x x 0 d v r 3 L f d s = a b x 2 t + y 2 t d t L f d s d s d ρ d σ Δ W = F · M i 1 M i = P Δ x i + Q Δ y i F = P i + Q j · L P d x = lim λ 0 P Δ x i L P d y = lim λ 0 P Δ y i L F · d r cos α = x t x 2 t + y 2 t L P d x + Q d y L P d x + Q d y = L P cos α + Q cos β d s x x 1 x 2 x 1 = y y 1 y 2 y 1 = z z 1 z 2 z 1 D Q x P y d x d y = P d x + Q d y Q x = P y D x y f d S = D x y 1 + Z 2 x + Z 2 y d x d y u x = P , u y = Q u = P d x + φ y = Q φ y φ y P d y d z + Q d z d x + R d x d y = 1 + 2 = P d y d z + Q d z d x + R d x d y = P cos α + Q cos β + R cos γ d S cos γ = 1 1 + Z 2 x + Z 2 y P x + Q y + R z d v = P d y d z + Q d z d x + R d x d y u Δ v d x d y d z = u v n d S u v x x + u v y y + u v z z d x d y d z R y Q x d y d z + P z R x d z d x + Q x P y d x d y τ P d x + Q d y + R d z | d y d z d z d x d x d y x y z P Q R | d y d x + p x y = q x ; y = e q d x [ q e p d x + C ] y + p x y = q x y α z = y 1 α d z d x + 1 α p z = 1 α q y = f x , y : : p = y p = f x , p y = f y , y : : p = y y = d p d x = d p d y · d y d x = p d p d y = f y , p y + p y + q y = 0 : : r 2 + p r + q = 0 r 1 r 2 y = c 1 e r 1 x + c 2 e r 2 x r 1 = r 2 = r y = c 1 + c 2 x e r x r 1,2 = α ± i β y = c i cos β x + c 2 sin β x e α x y + p y + q y = f x y = Y x + y x f x = e λ x P m x y = x k e λ x Q m x f x = e λ x [ P l x cos ω x + P n x sin ω x ] y = x k e λ x [ Q m x cos ω x + R m x sin ω x ] λ ± i ω f d v = 2 1 f d v = 1 + 2 1 , 2 1 1 ± x = n = 0 x n , x 1,1 e x = n = 0 x n n ! x R sin x = n = 0 1 n x 2 n + 1 2 n + 1 ! , x R cos x = n = 0 1 n x 2 n 2 n ! , x R 1 + x m = n = 0 C m n x n m = 1 2, x [ − 1,1] m = 1 2, x (−1.1] 1 + x = n = 0 2 n 1 2 n x n ln 1 + x = n = 0 1 n x n + 1 n + 1 , x (−1¸1] lim n = 0 1 n + n + 1 n + 1 y = e r x r 1 , r 2 1 Q + 2 λ + p Q + λ 2 + p λ + q Q = P m Q = x k Q m y = d p d x = d p d y · d y d x = p d p d y d 2 y d x 2 = d d y d x d x cos θ = a · b | a b | P r j a b = a · b | a | d = | A x 0 + B y 0 + C z 0 + D | A 2 + B 2 + C 2 x x 0 m = y y 0 n = z z 0 p T T 0 = 0 cos θ = | s 1 s 2 | | s 1 s 2 | cos θ = | n 1 n 2 | | n 1 n 2 | sin φ = cos θ = | n s | | n s | x x 1 m = y y 1 n = z z 1 p M 0 M 1 × s | s |

没有评论:

发表评论